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The paper is concerned with the derivability of a Lorentz instead of only a 
Weyl manifold as space-time structure from postulates about free fall and light 
propagation. For this purpose it identifies a property distinguishing both kinds 
of space-times. The property is one of a particular metric of the conformal class 
of the Weyl manifold, viz. that in suitably chosen locally geodesic coordinates 
the gi4 components, i = 1, 2, 3 vanish along the time axis. Although seemingly 
somewhat hidden, one is led to this property in looking for a metric which can 
play a distinguished role. We demonstrate that for a Lorentzian manifold such a 
condition is always given; thus it is a necessary one. It is sufficient since for a 
Weyl space it has the consequence that the metric connection of the selected g 
is projectively equivalent to the Weyl connection. Thus, if a Weyl space-time 
complies with it, it is a reducible one. The results of this paper lay the ground 
for deriving in a second step this condition from a simple, empirically testable 
postulate about free-fall woddlines and "radar" measurements by light signals. 

I. I N T R O D U C T I O N  

I.I .  The Problem 

Nearly as long as the history of general relativity itself is the history of 
efforts to improve the understanding of its underlying space-time picture-- 
that of a four-dimensional pseudo-Riemannian manifold (M, g). Weyl (1921) 
elucidated the different inherent mathematical structures in (M, g), and Rei- 
chenbach (1924, 1969) gave a constructive axiomatics for (special and gen- 
eral) relativity theory on the basis of some primitive notions. In this the 
former looked mainly from a mathematical, the latter mainly from a physical- 
epistemological point of view. We think that a space-time axiomatics which 
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is a kind of combination of these two approaches is an appropriate tool for 
a physically more intelligible foundation of (M, g). There one starts from 
some assumptions, as simple and plausible as possible, about simple physical 
objects and tries to establish the various mathematical structures of (M, g) 
on these grounds. A well-known example of such a theory is that of Ehlers 
et al. 0972) (EPS); freely falling particles and light signals are used as simple 
physical objects, resp. primitive notions of the axiomatics. Some empirically 
founded and testable properties of these objects are translated into mathemati- 
cal axioms which restrict the possible space-time models. The title of the 
original paper, "The geometry of free fall and light propagation," expresses 
concisely the aim of their work and of related efforts of other authors. 

However, insofar as one applies only axioms which can be formulated 
directly in terms of free fall and light, the resulting geometry is not the 
pseudo-Riemannian, but only the more general Weyl one. Only by additional 
postulates of a much stronger, less direct kind could one restrict the space- 
time picture further to a Lorentzian manifold. On the other hand, a Weyl 
geometry is generally not seen as a physically acceptable space-time model, 
since in it time and length scales cannot be transported in a path-independent 
manner. Our paper aims at laying the basis for a new, more direct postulate by 
identifying an inconspicuous characteristic feature which marks the transition 
from a Weyl to a Lorentz space. Such a postulate is formulated in Schelb 
(1996); it is related to so-called radar distance measurements with the help 
of light signals. The assumption which in this paper is presupposed below 
is derived in Schelb (1996) from the postulate. 

1.2. Mathematical  Basis 

Our mathematical point of departure is determined by the axioms of 
EPS up to Axiom C, i.e., by a Weyl space-time. Mathematically, a Weyl 
manifold is a triple (M, qJ, V w) consisting of: 

(a) A four-dimensional manifold M, which we assume to be of class 
C | the topology of which is Hausdorff and second countable. 

(b) A conformal equivalence class ~ of metrics g on M with Lorentzian 
signature (+ l ,  + l ,  +1, -1) .  

(c) A symmetric linear connection V w on M with vanishing torsion. 

The set of timelike geodesics of V w (without specification of parametri- 
zation) constitutes the so-called projective structure of (M, ~, Vw); they are 
physically interpreted as the worldlines of freely falling particles. The null 
paths o f~  are interpreted as worldlines of light signals; they are V w geodesics, 
too. The Axiom C of"compatibility" of the conformal and projective structure 
expresses the physical experience that freely falling particles can approximate 
("chase") the worldlines of light arbitrarily closely. 
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1.3. The Line of  Thought  

The concrete purpose of this paper is the following: It formulates a 
certain property which any model of the EPS axiomatics can have or not, 
and demonstrates that the subclass of models characterized by this feature 
consists of reducible Weyl manifolds, which are equivalent to Lorentzian 
manifolds. Thus an improved handling of the problem described above can 
be achieved if this attribute can be connected to plausible and physically 
more intelligible (in the sense of space-time theories) statements about free 
fall and light propagation. 

From the point of view of the mathematical structures listed above, the 
distinctive feature in question may appear somewhat hidden: It refers to the 
choice of a particular metric from the conformal class ~ of (M, ~, V w) and 
in the second place to a local property of the representation of this metric 
in special coordinates, namely locally geodesic ones. However, from the 
point of view of another, to some extent similar space-time axiomatics 
(Schroeter, 1988; Schroeter and Schelb, 1992, 1993; Schelb, 1992), which 
has served as a heuristic guideline for the present considerations, it is abso- 
lutely natural to investigate this property. If one has decided to single out a 
specific metric from ~, then the one which we will use is more or less 
uniquely determined by the available criteria. The intuitive meaning of this 
characteristic can be described as a certain symmetry between the conformal 
and projective structure; with regard to the locally geodesic coordinates the 
"lightcone" maintains a symmetricity along a geodesic, which in the general 
case is given only in one single event. This opens a new look at the relation 
of reducible and irreducible Weyl space-times: The former ones are distin- 
guished by an additional symmetry of the null and timelike parts of their 
geodesic path families, and these mathematical structures can better be 
mapped into empirical statements concerning particle paths and light 
worldlines. 

The paper is organized as follows: In Section 2.1 we sketch the way in 
which the conformal structure is constructed in the EPS theory. This is applied 
in Section 2.2 in order to pick out a special metric according to some heuristic 
ideas. In Section 3 we describe the construction of the special coordinate 
system and some crucial properties of the components of the chosen metric 
therein. Having these tools, we can specify which subclass of EPS models 
is to be investigated. Section 4 demonstrates that if one considers Lorentzian 
space-times in the same coordinate system, they show the characteristic 
property of this subclass. That means that it is indeed a necessary condition 
for a model of EPS axiomatics to be pseudo-Riemannian. Section 5 and the 
remainder are devoted to the proof of its sufficiency. 
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2. C O N F O R M A L  CLASS AND M E T R I C  

2.1. Construction of the EPS Conformal Structure 

In order to prepare the choice of  a special distinguished metric we have 
to sketch in which way the conformal structure is constructed in the EPS 
axiomatics [for formulations of the postulates and proofs see besides the 
original paper also Meister (1994)]. Let ~0 denote the set of worldlines of  
freely falling particles and P one of its elements; let q ~ M be any event 
with q ~ P ~ ~0. Let further f" P ~ I C R be an arbitrary parametrization 
("clock") of  this worldline P. Then (as follows from the axioms) there is a 
neighborhood U(q) so that each p ~ U(q)~ can in a unique manner be 
connected to two events et, e2 E P by light signals. This can be used to 
define a function h: U(q) ~ R (which will serve as an auxiliary device for 
the definition of a metric) by 

hq(p) := - [f(e2) - f(q)]  �9 [ f (e0  - f (q)]  (1) 

el is assumed to be "earlier" than e2: f(el) < f(e:) .  By choosing the zero of 
the parametrization so that f(q) = O, h takes the simpler form 

hq(p) = - f (e2 )  "f(eO (2) 

One can extend the domain of definition of h to U t3 P by the stipulation 
that for p E P the corresponding events e~ and e2 are identified with p: e~ 
= p = e2. Then h specializes further to 

hq(p) = _fZ(p)  (3) 

Let Hq denote the set of all events connected to q by light rays. If  p ~ Hq, 
then either el = q or ez = q, so that hq(p) = O. 

One postulates (we omit the motivations) that hq is C 2 in the argument 
p. On this basis one can define pointwise a metric tensor as a twofold 
derivation of the function hq in the event q: 

Definition. Given P, q e P and a parametrization f,  and vectors Yq, Zq 
TqM, gq: TqM X TqM ,--, R is defined by 

gq(Yq, Zq) : :  Y(Z(hq)) l q (4) 

One can prove the following properties (see, e.g., Meister, 1994): 

(a) dhqlq = 0 (which warrants the tensorial transformation of the 
twofold derivative of  hq). 

(b) gq(Yq, Zq) ~- gq(Zq, Yq). 
(c) I f  Vq ~ TqM is the tangent vector of  a light signal, then gq(Vq, Vq) 

= 0 (a direct consequence of the mentioned property of  hq). 
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That gq is at least of  class C 2 with respect to q is given in the EPS theory 
by a postulate. 

The definition of  g in q depends on the choice of  a special particle P 
and a special parametrization, but it can be shown that a change of P and f 
changes the metric gq in q only up to a conformal factor e~o In obvious 
symbolic notation 

gq[P', f '] = em(q)" gq[P, J~ (5) 

So as a result of these prescriptions one has a conformal structure ~J on M. 
The following observation is important: Ifgq is determined by the particle 

P and the parametrization f,  and if Xq is the tangent vector of P with respect 
to f in q, then because of  (3) 

gq(Xq, Xq) = - 2  (6) 

2.2. Choice  of  a Special  Metric  

As a next step we apply the foregoing in order to select, at first locally, 
a special metric from 2.  

Let P0 ~ M be arbitrary; let P be any freely falling particle with P0 e 
P. We denote the worldline of P by 7; since ~/is a geodesic of V w we can 
choose for its parametrization f in particular an affine parameter, denoted by 
t. Then, if ~/denotes the tangent vector of ~ with respect to this parameter 
t one knows that V~v~ = 0. 

Given 3, and t, we can define in a neighborhood of P0 the auxiliary 
function hpo and thus a metric gpo in P0- The same can be done in other events 
q ~ ~/, so that along ~/a special metric is constructed. 

In order to expand the definition beyond the single curve % we consider 
the worldlines of all other freely falling particles passing through P0- These, 
too, are timelike geodesics of V w Thus one can choose also VW-affine parame- 
trizations x on them; denoting their curves by "Yi: R ~ M and their tangent 
vectors with respect to T by ~/z, one knows V w "Yi = 0. Affme parameters 3'i 
are not unique, hut given only up to a constant factor. For the definition, 
however, we need a unique parametrization and so adapt T to t on ~/by the 
following condition using the already defined gpo in P0: 

gp0(~ '  ~/) = gpo(~i' ~i) ( 7 )  

The motivations and meaning of this condition in the frame of  a space-time 
axiomatics are discussed in Schroeter (1988), Schroeter and Schelb (1992, 
1993), and Schelb (1992); they are necessary if one wants to construct a 
metric on the basis of parametrizations of worldlines. In any case, (7) is 
obviously the most natural choice of the affine parameters and agrees with 
the usual notion of standard clocks in Lorentz manifolds. 
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If J+(Po) C M designates the set of all events which can be connected 
uniquely with P0 by particle worldlines (i.e., the "interior of the forward 
lightcone" § Hp0), then we see that we have defined functions hq for all these 
q in J+(Po) and thus constructed a unique metric throughout J§ t_J Po. 

Because of (6) we will finally define g := �89 and will in all that follows 
omit again the tilde. Our special distinguished metric thus has by construction 
in all q ~ J§ the property 

gq(~i, "Yi) : - -  1 ( 8 )  

if '~i is the particle worldline passing through P0 and q. 
In all this the special particle -,/was arbitrarily chosen. If one takes a 

~/' running also through P0 and starts the metric construction with it, one gets 
the same metric in J§ if only one starts with the same parametrizations. 

3. LOCALLY GEODESIC COORDINATES 

We will work in a special coordinate system which allows a simple 
representation of the above constructed g. These are the well-known locally 
geodesic or Riemannian normal coordinates, which by means of the exponen- 
tial map can be introduced at least in a neighborhood of any event of the 
manifold. Their most important feature is that they map all the geodesics of 
the used connection into straight lines through the origin. We apply them 
here with respect to V w and its geodesics, i.e., the worldlines of freely falling 
particles and their above selected affine parameters. Let t~ designate the 
coordinate map t~: U C M ~ p,4. The coordinates are constructed according 
to the following requirements: 

(a) ~(Po) := (0, 0, 0, 0). 

In Tpo a basis (El, E2, E3, E4) has to be specified: 

(b) One special free-fall worldline ~/has to be chosen, and the timelike 
basis vector is defined by E4 := "~ so that t~(~/(t)) = (0, 0, 0, t) 
[for q ~ J§ t >- 0]. 

(c) El, E2, E3 are spacelike vectors chosen so that gpo(Ei, E4) = 0, i 
= 1, 2, 3, and gpo(Ei, Ej) = 0, i, j = 1, 2, 3; i :/: j. 

(d) The affine parametrizations of the non-timelike geodesics r are 
chosen according to gpo(~/, ~/) = -gpo(~l, ~) in obvious notation. 

The well-known fact that in these coordinates, for the connection coefficients 
of V w, F~c(P0) = 0, a, b, c = 1, 2, 3, 4, holds has no direct application in 
our context. 
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Consequences for g , ,  in these coordinates are as follows: 

1. At the origin, o n e h a s g ~  = xl,~,where" q = d iag(+ l ,  +1, +1, - 1 ) .  
2. If the coordinates of ~/are denoted by v ", v = ~(~/), then g('~, "9) 

= g~vr v. For all events on ~/, i.e., on the four-axis holds v = 
(0, 0, 0, 1), and thus we see from g(% ~/) = - 1  that 

g44 = - -  l (9) 

along the positive four-axis. 

The coordinates are based on the choice of one special particle ~/, which is 
mapped on the four-axis. But this particle was not distinguished by any 
specific property, so that in fact we have a family of coordinate systems, 
each one defined by the particle "/i which yields the four-axis, all with 
properties 1 and 2. 

Below we will use the transformations between these coordinate systems. 
Let us denote by P(1, 4) the plane spanned by the one- and the four-axes of 
the coordinates: P(1, 4) := {x = (x l, x 2, x 3, xa) lx 2 = x 3 = 0}. Since we will 
consider mainly curves in P(I ,  4), we are interested in those transformations 
which leave this plane invariant. These take a very simple form, since all 
particle worldlines are straight lines through the origin; thus the transforma- 
tions are determined by that of TroM. 

Let us denote two coordinate systems of  the above kind by ~ and 0 ' ;  
let v, w ~ TpoM be two particle tangent vectors so that in + the v is mapped 
on the four-axis and w is in P(1, 4): 0(v) = (0, 0, 0, 1), +(w) = (w 1, 0, 0, 
w4), and in the other system t~'(v) = (v 'l, 0, 0, v'4), t~'(w) = (0, 0, 0, 1). 
From the manner of construction of  the coordinates one reads off that such 
a choice is possible. 

Proposition 1. The transformation of  t~ into ~ '  leaves the one-four  
plane invariant. 

Proof Let (A~0 denote the transformation matrix in TraM; let U 
Tpo so that 0(u) = (u I, 0, 0, u4). From AO(w) = (0, 0, 0, 1) and AO(v) = 
(v '1, 0, 0, v '4) it follows that A21 = A24 --- A31 = A34 = 0 and (AO(u)) i = 0 
for i = 2, 3. Since any x e P(1, 4) is lying on a particle worldline, from x = 
/x- u, ~ E R, it follows that x '  = ~ "  ~(u) and thus the proposition follows. �9 

The next proposition demonstrates that the vector w which is transformed 
into the four-axis in t~' determines the transformation with its components 
in ~. Denote u' = d/(u). 

Proposition 2. For a tangent vector of a particle worldline u E TpoM 
with u = (u l, 0, 0, u 4) in t~ we have 

/gt4 = U4W4 - -  ulwl; U r = x / ( U ' 4 )  2 - -  1 ( 1 0 )  
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Proof (a) Since in ~J as in t~' one has gp0 = "q, the relation - 1  = 

gin(u, u) = gpo(u', u') means (u' f)2 _ (u,4)z = _ 1. 
(b) From gpo(U, W) = gpo(U', W')  and w' = (0, 0, 0, 1) one gets utw I - 

U4W 4 ~ --U t4. �9 

Note that for all tangent vectors of freely falling particles with their 
above selected parametrization in P(1, 4) of such a coordinate system the 
reasoning in part (a) of the proof holds; they all obey the relation (vt) z - 
(V4) 2 = -- 1. 

For each point y in P(1, 4) of t~ which lies on a particle worldline one 
knows y = ku, k ~ R, if u is the corresponding tangent vector. Hence from 
Proposition 2 one immediately derives the components y'r  of y in ~ '  as 

y"  = ku"  = w4y I - w ly  4, y,4 _= w4y4 _ w,yl (11) 

Note that the transformations have to respect the time orientation of the 
particle worldlines. From (11) we get for the transformation matrix A for 
tangent vectors from t~ to ~ ' ,  according to A~(y) = ay'~l~y~, 

All = w 4, AI4 = - w l ,  A41 = - w  l, A44 = W 4 (12) 

i.e., the A ~  do not depend on y and indeed are identical to those at the origin 
P0 given in Proposition 2. 

For the inverse transformation one gets analogously 

yl = w4y, l + wly,4,  y4 = wly , l  -b w4y '4 (13) 

If we denote B := A-l ,  then B~, = Oy~/Oy '~ and we obtain 

Bll = w 4, Bl4 = w l, B41 = w l, B44 = w 4 (14) 

and similarly to Proposition 1 we know that B21 = Bz, = B31 = B34 = 0. 
Now we can consider the transformation of  the components of  the metric 

g; if g ~  denotes the components in ~ ' ,  then 

g'~v(Y) = Bi~(y)B~(Y)gik(Y), pb, v, i, k = 1, 2, 3, 4 (15) 

For tangent vectors in the one-four  plane we need only the metric components 
g~x, gx4 = g41, g44; their transformed versions can be calculated from the above: 

g~l = (w4)2gll + 2wlw4gl4 + (wl)2g44 (16) 

g~4 = wlw4(gl l  + g44) + gl4{(w1) 2 + (w4) 2} (17) 

g~4 = (wl)2gll + 2wIw4g14 + (W4)2g44 (18) 

gll = (w4)Zg~l - 2wlw4g~4 + (wt)Zg~4 (19) 

g14 = --wlw4(g~l + g~4) qt. {(W1)2 ..}_ (W4)2}g~4 (20) 
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g44 : (wl)Zg~l - 2 w I w 4 g [ 4  4- (w4)2g,~4 (21) 

4. A P R O P E R T Y  OF L O R E N T Z  S P A C E - T I M E S  

In this section a digression away from the EPS space-times is made. 
We consider a general Lorentz manifold (M, g), but in the same special 
situation as the EPS models above. That is, we choose a point P0 ~ M, take 
the family of timelike V~-geodesics which pass through P0, and pick V ~- 
affine parametrizations on them, which are adapted to one another as described 
above. Then in a neighborhood U of P0 we can construct completely analo- 
gously the locally geodesic coordinates based in Po- We demonstrate that 
then we have additional information about the components of g. 

Let us designate by ~b the corresponding coordinate map 4: U C M 
R4; ~ = (~b(g))~v; g is assumed to be a sufficiently smooth tensor field. 

Proposition 3. In the locally geodesic coordinate representation by ~b of 
a Lorentzian manifold (M, g) for all points y of  the forward four-axis [i.e., 
y = (0, 0, 0, y4) with y4 > 0] we have 

gn4(Y) = 0 (22) 

This relation is a consequence of the Gauss lemma for pseudo-Rieman- 
nian manifolds. For the proof of  the proposition we employ it in the form 
given by Sachs and Wu (1977): Consider a rectangle ~ = [a, b] • [ - r  r 
C R 2 with 0 < a < t7 and �9 ~ (0, ~), which is mapped into the manifold 
by cr: ~ ~ M, ~r E C% If one keeps one of  the arguments u ~ [a, b], v 
[ - r  r of  cr fixed, one has a curve in M parametrized by the other argument. 
Denote the corresponding vector fields T~ and/ '2,  counting u as the first, v 
as the second argument. The Gauss lemma then requires two presuppositions: 

1. For each fixed value of  v the resulting curve is a geodesic; if cry(u) 
:= cr(u, v), then for all v ~ [ -~ ,  ~], cry: [a, b] ~ M is geodesic. 

2. The geodesic vector field Tl is of constant length with respect to 
the Lorentz metric: g(T1, T0 = const in ~ .  

The statement of the Gauss lemma is that along each of the geodesics r 
the relation 

g(Tn, T2) = const (23) 

holds. 
For our purpose here we specify cr as follows. Consider the P(1, 4) 

plane of  the coordinate system ~b and the set of  Vg-geodesics ~/through P0 
which lie in P(I,  4). Let us choose from this set all those between an arbitrary 
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timelike geodesic and its symmetric counterpart on the other side of the four- 
axis; i.e., the tangent vectors of these boundary curves w, W with respect to 
the affine parametrizations are such that w ~ = -W~, w 4 = ~4. Because of  
(wl)  z - (w4) 2 = - 1  one can parametrize the set of these geodesics by w I. 
We write w ~ =: v, w 4 = (1 + v2) ~/2 and denote the corresponding curves in 
M by ~/v and ~b(',/~) = ~/~. The affine parameter of any ~/v is denoted by t~. 
Then we define cr(u, v) := ~( t v )  with t~ = u. In the domain of definition 
the a is understood to be small and the value of e determines the boundary 
curves of the chosen set of geodesics. The four-axis is given by "Yo, ~/(to) = 
(0, 0, 0, to), with ~ = ~b(Tj), j = 1, 2; we know from the Gauss lemma that 

^ ^ ~ ^ v  
g~oTl T: = const (24) 

along any of the r 
We evaluate this in particular along ~/0, where J'l = (0, 0, 0, 1). In order 

to determine Tz, we have to consider the curves ~b(o-u(v)) where u is kept 
fixed. With u -- t~ they contain all points u. (v, 0, 0, (1 + vZ)V2), v ~ [ - ~ ,  
r the constant value of  u marking the respective curve. Then 

7"2 = ~ (+(Cru(v))) = u" l ,  O, O, (25)  

and in particular on ~/0:I"2 = (u, O, O, 0). Plugging this into (24) gives on ~/o 

g41" u = const (26) 

Since here u = to, (26) means in the case const 4= 0 4= g41 that for points 
near the origin P0, i.e., for u ---> O, I~al I must increase proportionally to u -1. 
The lower limit for u is a, which cannot reach O, but approaches it arbitrarily 
closely, so that there is no finite upper boundary of 1~411 in this process. In 
Po, however, one has g41  = qq41 = O, SO that we get a contradiction to the 
continuity of ~41 in P0. Thus the only possibility to obey (26) is ~41 -- 0 
along ~/o, which proves the proposition above. 

5. CONSEQUENCES IN EPS SPACE-TIMES 

We come back to the consideration of the special metric chosen from 
the EPS conforrnal class 2 .  The general question which we want to answer 
now is whether this metric for a subclass of EPS models (specified in a 
moment) plays a distinguished role in ~3 in the following sense: Are the 
geodesics of V w simultaneously those curves between a pair of two events 
(in U) which are of extremal length with respect to g? If so, they are also 
geodesics of the metric connection Vg of g. 

The selection of the subclass will be made by the property which we 
isolated in the preceding section: 
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Assumption. In each coordinate system of  the kind constructed above, 

g14 = 0 (27) 

holds on its positive four-axis. In the locally geodesic coordinates constructed 
in Section 3 this leads us to the following task: Consider any two events q~, 
q2 on the positive four-axis. They are connected by the particle worldline ~h 
for which this coordinate system is constructed. If v: R ~ R 4 is another 
timelike curve running through ql and q2, one can ask the question: For any 
such v, is its length with respect to g between ql and qz smaller than the 
corresponding length of the VW-geodesic ~/1? 

Let us assume in a first step that v is inside P(I ,  4). 
The length is independent of  the parametrization of  the curve; thus we 

use here as convenient parametrization that by the x 4 coordinate. For ~/1 
mapped on the four-axis of the coordinates this is identical to its affine 
parameter t. If ~(q0 = (0, 0, 0, x4), ~(q2) = (0, 0, 0, x4), one asks whether 
the following holds: 

{ (dll dll~ 1/2 _ ~x4f /d'~l d'yi ~ ~ 1/2 d.x4 (28) 
ix4 2 '  m 

This can be answered positively if for all x a with x 4 -< x 4 --< x 4, 

( d r  d r )  [ d ,  , d~h ~ = 
g ~X4,~-- ~ :> g ~ - ' ~ ,  dx4/  - 1  (29) 

In this relation g is compared at two different points (one on v, one on 3'1) 
which have the same four-coordinate. The difficulty in verifying (29) is that 
for the point on v we do not know the concrete g~.; on ~/1 only g44 = - 1  
is of  relevance. 

5.1.  Poss ib i l i ty  o f  g44 < - 1  

One way to look for an answer is the following: Through each of  the 
points of v there passes a geodesic coming from the origin; let us denote it 
here by ~/i- If ti denotes the affine parameter of  'Yi specified by (7), we know 
g(d~i]d t i ,  da/i/dti) - -  - 1 in all of  its events. For the tangent vector u := dvi/ 
dti, at the origin one has "q(u, u) = "q(dTi/dx 4, dvl/dx 4) = - 1 ,  so that (u J) 2 
- (u4) 2 = - 1 along ~'i, and because of I u ~ I 4= 0, one has u 4 -> 1. On the 
other hand, for the tangent vector of  v, w : = dp/dx 4, one knows by construction 
that w 4 ----- 1. 

Let z be the point of intersection of ~/i and v; if in z one has g44 < - 1, 
then (29) may be wrong: Let for instance v in q be such that w = (0, 0, 0, 
1); then gq(w, w) = g44 < - 1 .  Thus a necessary condition for (29) is that, 
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at any point inside the forward lightcone of  Po in our coordinates, g44 > - 1 
(which is its value on the four-axis); that this is indeed suff icient for g(w, w) 
- - 1  along v is shown in Proposition 7 below. 

In this paper we are not able to give a comple te  proof for the condition 
g44 ~ - 1, and thus below we use another reasoning. But it is very interesting 
to illuminate the meaning of  this condition and to demonstrate what is to be 
done to prove it. 

To this end let us consider again the coordinate transformations of the 
g~;  the above assumption leads to important consequences for them. Let ~/j 
be any VW-geodesic through the origin Po, let v denote its tangent vector with 
v ~ ~ 0; as usual v 2 = v 3 = O, g(v, v) = - 1; and let y be any point on -/j. 
If we denote all entities in the "rest system" of ~/j (i.e., where it is mapped on 
the four-axis) with a tilde [e.g., y = (0, 0, 0, y4)], we have the following result: 

Proposi t ion  4. We have 

gll(Y) = (Va) 2" g l l (y )  -- (Vt) 2 (30) 

gl4(Y) -'= VlV4" (1 --  g l lQ~))  ( 31 )  

g44(Y) = (v2) 2" gll(.f) -- (Va) 2 (32) 

P r o o f  Equations (30)-(32) are immediately obtained by inserting g44(_f) 
= - 1  and gl4~) = 0 in the general transformations (19)-(21). �9 

The meaning of the proposition is that if g44 is given in y, then so are 
gll and g14: From g44 one can calculate gll(Y) according to (32) and from 
this by (30) and (31), respectively, gll(Y) and gl4(Y). 

The value - 1  for g44(Y) is the borderline between different situations: 

Proposi t ion  5. (i) g4n(Y) >- resp. < - 1  means gtl(Y) > resp. < 1. 
(ii) gll(Y) <-- resp. > 1 means gH(Y) <- resp. > 1. 
(iii) For yl > 0, g~l(Y) ----- resp. > 0 means g14(Y) ~ resp. < 0; for yl 

< 0, gt4(Y) -< resp. > 0. 

P r o o f  (i) Because of (vt) 2 - (v4) 2 = - 1  one can write (32) as 

ga4(Y) + (v~) 2 + 1 _ gan(Y) + 1 
gH(Y) = (vl)2 (vl) 2 + 1 (33) 

from which the proposition can be read off. 
Parts (ii) and (iii) are obvious (yl = a .  v I, a e R+). �9 

The physical difference between the two situations is made visible by 
a further evaluation of the transformations (16)-(21);  if g44 < - 1, they show 
that at coordinate points near the null geodesics through Po the local light 
cone tips over in such a way that there are timelike worldlines which run 
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backward in the time coordinate x 4. I f  g44 -> - 1 this phenomenon  does not 
occur. I f  one can formulate an argument  to exclude such awkward  situations, 
one excludes g44 < - 1 .  

5.2. Extremality ofg~ 

The main  consequence o f  our Assumpt ion  rests on the fol lowing result: 

Proposition 6. For  points x on the four-axis, x = (0, 0, 0, x4), one has 

gl4 ag44 
2--~- + ~ = 0 (34) 

Proof. Let w(x) denote the field of  tangent vectors  of  the particle 
worldlines in P(1, 4) through P0 with respect  to the chosen parametrizat ions.  
All these w obey (wl) 2 - (w4) 2 = - 1 ,  and everywhere  in the domain  of  
definition of  w and g the relation g(w, w) = - 1 holds. Hence  

O -  ~g(w, w) _ 0 OX 1 OX 1 {g II(X)(WI(x))2 + 2gI4(X)WI(x)wa(x) + g44(X)(W4(X)) 2} 

(35) 

The dependence o f  w on the coordinates x is g iven by 

x t x 4 
wl(x 1, x 4) = w4(x 1, x 4) = (36) 

x/(X4) 2 -- (X') 2' x/(X4) 2 -- (XI) 2 

Thus  the derivation OlOx L yields 

(Og,l] (xl): 2x'((x") 2 - (xl) :) + 2(xl) 3 
0 = ~ X  1 ] (X4) ~ Z "(XI)2 + gll" [~4"~ Z (-"~')'2j2 

2 0g14[ XIx4 ~ 2 X4[(X4)2 -- (X')2] + 2(X1)2X4 
+ 

~(X4)2 Z ixl)2] + g14 ~(~')~ 

+ 0g44 (X4) 2 + g44(X4)2"[(X4)2 2XI 
OX l (X4) 2 -- (xl) 2 -- (xl)2] 2 (37) 

On the four-axis one has x I = O, so that this expression reduces to (34). �9 

Since on the four-axis we have gl4(x) = O, we get fur thermore the 
fol lowing result. 

Corollary. On the four-axis, 

0g44 
- 0 ( 3 8 )  

Ox i 
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Thus on lines x 4 = const --> 0, g44 has in x ~ = 0 an ext remum. We 
discuss the three possibilities o f  a min imum,  a max imum,  or a saddle point, 
in order to show that in any case either the VW-geodesics are the curves of  
maximal g-length or that they are excluded since they lead to contradictions. 

5.2.1. Minimum 

We have to compare  the length of  any t imelike curve in P(1 ,4)  connect ing 
two points q l, q2 on the four-axis with the length of  the corresponding segment  
of  the axis itself. I f  ~(qi) = (0, 0, 0, x,.4), i = 1, 2, then one has to deter- 
mine  whether  

4 

fx C2{--g(w, W)} 1/2 dx  4 < o r  > x 4 - ~ (39)  
4 

As discussed above,  in the case where g44 has a m in imum on the four-axis,  
the < sign in (39) is valid: 

Proposition 7. I f  at a point y, g44(Y) >- - 1, then for any vector  u a TyM 
with u 4 = 1, one has g(u, u) >- - 1 .  

Proof. Let  v be the tangent vector  o f  the particle woddl ine  on which y 
is lying. We rewrite g(u, u) so that its dependence  on g44 is evident: 

g(u, u) = gl l (ul)  2 + 2g14 ul + g44 (40) 

= (ul)2[(V4) 2(v4)2 q- g44 ] 
(v~)2 (vb 2 

+ 2u I vtv 4 1 -]] + g• (41) 

I f  we  vary u ~ in this equation, we can see the value of  it for  which g(u, u) 
becomes  minimal;  building the derivation of  (40) with respect  to u ~ leads to 
the result 

VlV4( 1 - -  g l l )  
Utmi" = (V4) 2"gll -- (Vl) 2 (42) 

using the "rest sys tem" value gll = [(v4) 2 + g44]/(vl) 2 as an abbreviation.  
1 again in (40) and expressing g44 by gll yields after an e lemen-  Plugging Umi. 

tary calculation 

g l l  
= > - 1 (43) g(Umin' Umin) (1)4) 2" g l l  --  (VI) 2 - -  

because ~ -> 1. �9 
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Thus, according to the above discussion, the axis segment is of  maxi- 
mal length. 

5.2.2. Maximum 

In the case where g44 has a maximum on the four-axis, it is not automati- 
cally clear that in (29) the < and in (39) the > are correct. In the subcase 
where in (29) the --> remains valid, again the maximal length of the axis 
segment is confirmed. In the other subcase where the < holds, the axis 
segment is of  minimal length: Assume that there are values of  x 4 so that 
(w 4 =  1) 

g(w, w) = gll(Wl) 2 + 2gl4w I + g44 < --1 (44) 

Let us assume that a curve from q~ to q2 running through the region where 
x ~ < 0 is of greater length than the four-axis. In (43) from g44 < - 1  it 
follows that g14 < 0 because of  (31); the first term on the right-hand side of  
(43) is positive, the second depends on the sign of  w 1. I f  one passes over to 
a curve which is the mirror image with respect to the four-axis, i.e., w' l = 
- w  ~, both terms keep their sign. Thus if one considers curves very near the 
four-axis (Ixl l  < <  1), then in every x 4, where the relation (43) holds, it is 
also true for the mirror-curve v '  in the region x ~ --> 0. That means that the 
length of v '  is greater than x 4 - x 4, too. Thus the four-axis is of  minimal 
length. But by its construction according to the EPS procedure g is a pseudo- 
Riemannian metric, and we are considering timelike curves. So this case 
would yield a contradiction. 

5.2.3. Saddle Point 

The case of  a saddle point of  g44 on the four-axis proves to be very 
pathological. Assume, for example, that the value of  g44 is decreasing for x ~ 
--> 0 and increasing for x I < 0. Hence for x 1 --> 0 one has ga4(X 1) < - 1 and 
thus because of (30) gl l(X l) < 1; for x 1 < 0 one has ga4(X l) > - 1 and gl l(x l) 
> 1. Since g~(x 1) is a continuous function, gll = 1 on the four-axis. Without 
this condition gt~ = "qH, a saddle point is impossible. Let us consider any 
coordinate transformation "to the right," i.e., where x I is mapped into .f~ with 
.~1 _> x ~. The g~v transformations specialize for the point on the four-axis into 

g44(3~) = (wl)  2" 1 -- (W4) 2 = - -1 ,  gll(3~) = (W4) z" 1 - (wl) z = 1 
(45) 

i.e., for this point the g,v remain unchanged. But for all points with x I < 0, 
one has in its "rest system" gt~ -> 1 and thus after the transformation ~44 ---> 
- 1 .  That is, on the four-axis of  the new coordinates g44 has a minimum; 
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analogously, it has in the case of a transformation "to the left" a maximum. 
Either g has to be partially an indefinite and partially a definite metric, or it 
has in both regions the property, that the particle worldlines through Po are 
of maximal length with the exception of that where the saddle point occurs. 
Thus we can exclude this case. 

5.3. Non-P(1, 4)-Curves 

Up to now we have considered only curves from qi to q2 in P(1, 4); of 
course, all preceding considerations remain true for a curve in any radial 
plane spanned by any spacelike vector and the four-axis, since a purely spatial 
rotation of the coordinate axes makes this plane into P(I ,  4). Accordingly 
we extend our assumption: 

Assumption. In each coordinate system of the kind constructed above 
there holds on the positive four-axis 

gi4 = 0, i = 1, 2, 3 (46) 

Thus the length of all such radial curves is smaller than that of the four-axis. 
Can a "nonradial" curve, i.e., one with v 2 =/= 0, v 3 =# 0 for its tangent vector 
v, then violate this? Let us consider any point y of such a curve, rotate the 
coordinates so that y is in P(I ,  4), and decompose v = w + u, where w = 
(w l, 0, 0, w 4) is the projection of  v on P(1, 4). Then g(v, v) = g(w, w) + 
2g(w, u) + g(u, u). The last term is positive, since u is spacelike; g(w, w) <-- 
- 1  if g44 has a minimum on the four-axis. Thus for curves near the four- 
axis where I W 1 I and also g24 and g34 are very small, the term g(w, u) becomes 
small, and we have g(v, v) <-- g(w, w). If the statement is true for all nonradial 
curves near the four-axis, this is enough to show that it is a geodesic of the 
chosen g. The extension of the argument to the case of a maximum of g44 
is obvious. 

We can summarize that the particle worldline which is mapped on the 
four-axis is a geodesic of the Levi-Civita connection of g; this particle was 
arbitrarily chosen in all preceding reasonings, so that they can be repeated 
with all other particle worldlines running through Po. 

6. EXTENSION OF T H E  M E T R I C  

Now we direct our attention to those VW-geodesics which run through 
J+(Po), but not through P0. In order to extend the definition of our distinguished 
metric g beyond J§ it is necessary to answer for the other VW-geodesics 
the question of whether they are also geodesics of the metric connection of 
g, denoted V g. This is investigated here. 
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Since g is taken from the conformal class ~, its Vg is conformally 
equivalent to V w (Meister, 1994, Chapter 4). This means: 

Proposition 8. For all vector fields X, Y ~ TM there is a r ~ TM 
determined by g so that the following equation holds: 

V w y  = v g y  + g(dpg, X ) Y  + g(t~g, Y)X  - g(X, y)t~g (47) 

For a proof consult, for instance, Meister (1994). 
Let us apply this relation to any event a of the domain of definition of 

g in particular with X = Y = ~/i, where y; is the particle worldline running 
through p and a: 

V W '  = vgi'~h Jr- 2g(~g, ":liYi ~li)~li - -  g(~li, "Yi)dPg (48) 

By definition, Vwyi = 0 and g('Yi, ~/i) = - 1; our result that Yi is of extremal 
length with respect to g yields 

2g(dpg, ~li)~li = - - %  (49) 

Thus ~g is proportional to ~/i in a: dPg(a) = r.  "gila, r ~ R. 
Inserting this again in (47) enforces r = 0 and so dPg(a) = 0. Consider 

now a geodesic ~ of V w through a, but not through Po. Applying (46) in a 
at the tangent vector ~/of r 

vW~ = V ~  + 2g(~g, ~)~ - g(~, ~)~g (50) 

Because of ~g -- 0 in a and if the used parameter of  ~/ is affine so that 
vw4/= 0, we get V~ -- 0 in a. Since a was arbitrarily chosen, we can infer 
that everywhere in J+(Po) the same is true for -v/, so that it is a geodesic of 
Vg, too. 

For the construction of the definition of  g beyond J+(Po) one has to take 
a V w geodesic, say ~/, passing through J+(Po) and fix a parametrization on 
it. If in an event of  J+(Po) this "~ intersects with a ~/i, one has to apply (7) 
to choose its affine parameter. But can this be done in a unique manner? 

If (7) is used in a ~ J+(Po) with a ~/1 and in b ~ J+(Po) with a ~2, does 
this yield the same parametrization on ,v/? The last proposition allows an 
affirmative answer: It means that the number g('f/, ~) is constant along ,v/for 
any affine parametrization: Vg(g(~/,-~ )) = 0. Then 

ga('~l, "~/1) = ga('~,~) = go(~l,~) = go (~/2, ~/2) (51) 

in consistency with 

ga(~l, ";/1) = gpo(~q' ~/l) = gpo(~/2, 42) = gb(~2, ~/2) (52) 

ThUS the definition of g can be extended to all of  M, and the same reasoning 
as above shows that all geodesics of V w are geodesics of V g, too. That means 
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that V g is not only conformally equivalent, but also projectively equivalent 
to V w and hence that a (M, ~3, V w) in that subclass of EPS space-times in 
which our assumption holds is reducible to a Lorentzian manifold. 
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